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Abstract
Gravitational alternatives to dark matter require additional fields or assumptions beyond general relativity

while continuing to agree with tight solar system constraints. Modified Newtonian Dynamics (MOND),

for example, predicts the Tully-Fisher relation for galaxies more accurately than dark matter models while

limiting to Newtonian gravity in the solar system. On the other hand, MOND does a poor job predicting

larger scale observations such as the Cosmic Microwave Background and Matter Power Spectra. Aether-

Scalar-Tensor (AeST) theory is a relativistic generalization of MOND that accounts for these observations

without dark matter. In this paper, I derive AeST from Kaluza-Klein theory in one extra dimension as a

consequence of higher dimensional gravitoelectromagnetism or “frame dragging”. In the KK theory, MOND

is a special case of a slicing condition in the 5D ADM formalism. This has two benefits: first is means that

AeST is compatible with Kaluza-Klein dark matter theory, which is a strong candidate for Weakly Interacting

Massive Particles (WIMPs), the other is that it provides an elegant mechanism for the scalar and vector fields.

It constrains most of the freedom in the definition of AeST which does not have a field theoretic motivation.

This is important because the Kaluza-Klein theory predicts that spin-2 tensor modes must propagate at the

speed of light, in agreement with observation, from theoretical constraints while AeST has to match this

observation empirically. Furthermore, it removes need for the interpolating function in MOND and the

Lorentz-violating condition on the vector field to be physical since they are analogous to a gauge condition

and depend on state of motion.

I. INTRODUCTION

Fritz Zwicky first proposed dark matter to explain the rotational curves of stars in the outer

reaches of galaxies which appear to rotate far faster than Newtonian physics predicts [1]. The best

evidence for Dark Matter, however, is at the largest scales. The ΛCDM model does an excellent

job fitting observations at the cosmological scale as well as weak and strong lensing of galaxy clus-

ters. At smaller scales, however, it runs into difficulty. Simulations and observations of individual

galaxies (those with high mass and dwarf satellites in the Local Group) have led to the search for

ways to either supplement or replace CDM at those scales [2].

In 1983, Milgrom proposed an alternative explanation for galactic rotation curves, modifying

the Newtonian force at very low accelerations so that rotational curves match the Tully-Fisher
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relation [3] which is an empirical fitting to these curves [4][5]. The following year, Milgrom and

Bekenstein published a modified Newtonian theory that became known as Modified Newtonian

Dynamics or MOND [6]. Forty years later, MOND continues to be a serious contender to explain

at least some dark matter attributed observations. A recent review of dark matter theories including

MOND can be found in [7]. MOND has been shown to fit not only galactic rotation curves [8],

better than halo models but also dwarf galaxies such as a recent study in the Fornax cluster [9].

MOND is a modification of the force a body experiences under gravity from the standard 𝐹 =

𝑚𝑎 to 𝐹 = 𝑚𝜇(𝑎∕𝑎0)𝑎 such that 𝜇(𝑥) → 1 for 𝑥 ≫ 1, leading to Newtonian dynamics for the

solar system as well as clusters of stars that are small enough where gravitational acceleration is

significant, and 𝜇(𝑥) → 𝑥 for 𝑥 ≪ 1 which applies to galaxies. The parameter 𝑎0 determines the

acceleration at which MOND takes over from Newton.

Colliding galaxy clusters such as the Bullet Cluster (1E 0657-558) and galaxy formation in

the early universe are prime test cases for both models of CDM and MOND. Early criticism of

MOND that it was unable to reproduce asymmetric weak lensing and that, therefore, such lensing

was direct evidence of dark matter were based on the spherically symmetric version [10]. Non-

spherically symmetric MOND which do not neglect the additive curl field can reproduce nonlocal

weak lensing of galaxy clusters to some extent [11][12]. The curl field, however, requires a great

deal of fine tuning which is difficult to justify and may have other unintended effects. Another

problem is that when accelerations are close to or higher than 𝑎0, for example Abell 1689 [13],

behavior is highly sensitive to the interpolating function 𝜇 or MOND predicts behavior should be

Newtonian while lensing shows it is not. The case for MOND at these scales is bad.

MOND is not perfect at the galactic scale either. Discrepancies between rotation curves and

lensing must be accounted for by introducing gravitational effects beyond those that come from

the visible baryonic matter using standard, spherical boundary conditions [14][15]. MOND also

overpredicts vertical accelerations, perpendicular to the galactic plane, in conflict with Milky Way

data [16]. Other dark matter theories that try to address galactic rotation curves with additional

fields beyond pure CDM such as superfluid dark matter [2] also suffer from this same problem

[17]. As with the Bullet cluster, such studies, however, neglect the background curl field, so their

results do not rule those theories out.

The need for additional matter to explain the behavior of several galaxies is not necessarily dis-

puted [18]. MONDian theories, however, can account for a great deal of the phenomena attributed

to such particles at the galactic scale without the need for dark matter halo formation [19]. Halo
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density profiles are fitted to rotation curves for each galaxy but struggle to explain the lack of vari-

ation in rotational curves, especially at high mass scales. Simulations show a much larger scatter

around the Tully-Fisher relation than observed [20]. For this reason, one would prefer not to give

up on MOND completely at the galactic scale but clearly additional features are needed to account

for large scale phenomena.

Because MOND does not directly model lensing, it needs a relativistic generalization that is

compatible with tight constraints on GR in the Solar System. Aether-Scalar-Tensor (AeST) the-

ory is a generalization of a relativistic realization of MOND, Tensor-Vector-Scalar (TeVeS), [21]

[22]. AeST succeeds in two important observations that Bekenstein’s original TeVeS theory did

not agree with: the propagation speeds of spin-2 tensor modes [23][24] and Baryonic Acoustic Os-

cillation peaks in the early universe [25] [22]. Indeed, Skordis et al. showed good agreement with

all Cosmic Microwave Background (CMB) power spectra peaks for certain choices for the interpo-

lation function, 𝜇 [26]. Dustlike evolution of the scalar field in the early universe, which decouples

from the vector field, has a similar effect on BAO as dark matter. AeST remains a strong contender

for an alternative to dark matter, partly because it introduces sufficient degrees of freedom to mit-

igate the need for it in some cases. It also shares features with Einstein-Aether theory that may

address galaxies clusters including the bullet cluster [27]. AeST provides a potential explanation,

also, for recent JWST observations of large, bright galaxies in the very early universe, where vector

field perturbations may be a better predictor of their formation than non-self interacting Cold Dark

Matter (CDM) models [28][29][30][31][32].

In AeST, as in TeVeS, the Bekenstein-Sanders metric universally couples to matter,

𝑔𝑎𝑏 = 𝑒2𝜙�̃�𝑎𝑏 + 2 sinh(2𝜙)𝛽𝑎𝛽𝑏, (1)

where �̃�𝑎𝑏 is the Einstein metric, 𝜙 is the scalar field, and 𝛽𝑎 is the vector field (sometimes also

given the symbol 𝐴𝑎 or 𝔘𝑎). Each of these has its own action as described in section III as well as

constraints on 𝜙 given by 𝜇 and a constraint on 𝛽𝑎 such that 𝛽𝑎𝛽𝑎 = −1. Only certain constraints,

in a quasi-static approximation, give the correct MOND and Newtonian limits.

An open problem for AeST is that it is an ad hoc empirical theory, constructed to match ob-

servations. Its scalar field is constrained to obey MONDian physics. Likewise, its vector field is

constrained in such a way as to violate Lorentz covariance. This constraint is relatively mild and

appears to be related to the arrow of time, but it is unclear why this particular spin-1 field would

obey such a constraint while others do not.
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Field theoretic explanations have turned up serious problems with the fine tuning of MOND-

ian models, with TeVeS being one of the less problematic ones but still frustratingly opposed to

the clear geometric meaning of pure GR [33]. This creates a considerable problem for match-

ing to observations since the actual form of the theory is not known from first principles or other

observations but rather fit to the data. For example, the form of 𝜇 is undetermined and different

interpolating functions between the Newtonian and MOND regimes generate different results, par-

ticularly when a large percentage of matter experiences accelerations on the order of 𝑎0. While

there are principles explanations for MOND, notably Verlinde’s Entropic Gravity (EG) [34][35],

these are non-relativistic, and there are none for AeST.

In this paper, I propose a mechanism by which AeST arises from Kaluza-Klein theory. In one

extra dimension, additional fields take the form of a scalar lapse function and a vector shift function.

Using Arnowitt-Deser-Misner (ADM) [36] formalism, I show that, not only does Kaluza-Klein

theory agree with AeST, it predicts that spin-2 tensor modes propagate at the speed of light as

demonstrated in observations of GW170817 [37], a necessary but otherwise ad hoc modification

that had to be made to the original TeVeS in order to agree with observation [22].

Define a 4 + 𝑑 dimensional metric, 𝛾𝐴𝐵 where capital Latin letters will refer to indexes 𝐴,𝐵 =

0, 1, 2, 3,… , 4 + 𝑑 − 1, lower case Latin letters will refer to 4 + 𝑑 dimensional indexes 𝑎, 𝑏, 𝑐 =

0, 1, 2, 3,… , 4 + 𝑑 − 2 where 𝑥4+𝑑−1 is the ADM flow dimension rather than 𝑥0 as in the standard

formalism. From this theory arise a vector and scalar field which under certain conformal trans-

formations, couples to matter in nearly the same way as AeST which becomes identical in both the

quasi-static limit which leads to MOND as well as perturbations against an FLRW background for

spin-2 tensor modes.

II. KALUZA-KLEIN SLICING

Kaluza-Klein theory has historically been used to unify forces with gravity via a disformal

relationship, in which case the other forces such as electromagnetism are the result of a choice

of slicing in the 4+d-D manifold for 𝑑 additional dimensions. KK theory has also been used to

generate potential dark matter candidates, e.g., bosonic, based on light particles in a compactified

dimension[38][39]. The approach taken in this paper proposes that additional fields in Kaluza-

Klein theory could be responsible for MOND behavior in galaxies but does not rule out LKP.

For the remainder of the paper, we will assume 𝑑 = 1 and the additional dimension is 𝑥4 but
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that does not preclude generalizations to more dimensions. The KK metric obeys the following:

𝑑𝑆2 = −𝜖𝛼2𝑑𝜏2 + 𝑔𝑎𝑏(𝑑𝑥𝑎 + 𝛽𝑎𝑑𝜏)(𝑑𝑥𝑏 + 𝛽𝑏𝑑𝜏) (2)

[40] where 𝜖 = 1 for timelike and 𝜖 = −1 for spacelike additional dimension 𝜏 = 𝑥4.

In order to be well-defined, the ADM formalism for this KK theory requires a slicing condition.

This condition describes how the 5D manifold slices into 4D submanifolds and results in coupled

equations for the submanifold metric, 𝑔𝑎𝑏, shift vector, 𝛽𝑎, lapse function, 𝛼.

In our KK-ADM formalism, the 𝜇 function in MOND emerges from the slicing condition. In the

ADM slicing conditions are chosen based on practical requirements such as avoiding singularities

[41] and removing interdependencies in degrees of freedom [42]. Slicing conditions in 3+1-D GR

define the set of spacelike hypersurfaces, Σ3(𝑡), with spatial metric 𝛾𝑖𝑗 from one moment in time to

the next, where time, 𝑡, is a global coordinate parameter. We refer to this condition as spacetime

synchronization. The slicing condition enforces what is a standard interval of time at each point in

a spatial manifold. There is freedom to scale the infinitesimal tick interval on the extra dimension,

and this freedom has the nature of a non-dynamical scalar field which we identify with 𝜇.

The rest of the condition is fixed by a constraint on the shift vector which defines the degree

of coordinate shift from one thin slice to the next with zero shift vector being a normal coordinate

system.

In a 4+1 KK theory, the same is true but rather a set of submanifolds Σ4(𝜏) which include time

as a dimension are defined with metric 𝑔𝑎𝑏 based on a parameter 𝜏 which is analogous to time but

may be spacelike.

III. DERIVATION OF AETHER-SCALAR-TENSOR THEORY FROM KALUZA-KLEIN

This AeST theory [30] gives the action,

𝑆TeVeS =
1

16𝜋𝐺 ∫ 𝑑4𝑥
√

�̂�
[

𝑅 − �̂� + 𝜆𝛽(𝛽𝑎𝛽𝑎 + 1) −

𝜇𝑔𝑎𝑏𝜕𝑎𝜙𝜕𝑏𝜙 − 𝑉 (𝜇)
]

+ 𝑆𝑀 [�̃�]. (3)

where

�̂� = �̂�𝑐𝑑𝑎𝑏∇𝑐𝛽𝑑∇𝑎𝛽𝑏 (4)

and

�̂�𝑐𝑑𝑎𝑏 = 𝑐1𝑔
𝑐𝑎𝑔𝑑𝑏 + 𝑐2𝑔

𝑐𝑑𝑔𝑎𝑏 + 𝑐3𝑔
𝑐𝑏𝑔𝑑𝑎 + 𝑐4𝑔

𝑑𝑏𝛽𝑐𝛽𝑎. (5)
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The original TeVeS theory of Bekenstein [21] assumed that 𝑐𝑖 were constant, which caused spin-2

tensor modes of GW to not match the propagation of electromagnetic modes [22]. Recent observa-

tions of GW170817 by LIGO require the propagation speed of the gravitational tensor 𝑐𝑇 to satisfy

constraint of |𝑐𝑇 − 1| < 10−15 in units where the speed of light in vacuum 𝑐 = 1 [24]. Skordis et

al. show that in AeST theory, if 𝑐13 = 𝑐1 + 𝑐3, then,

𝑐𝑇 = 𝑒−4𝜙∕(𝑐13 − 1) (6)

If 𝑐𝑇 = 1, this implies that,

𝑐13 = 1 − 𝑒−4𝜙. (7)

We will now arrive at this theory starting from a 𝐷 = 4 + 1 Kaluza-Klein formalism.

Let the non-conformally scaled, Jordan metric have the form:

𝛾 ′44 = 1∕𝛼2 + 𝑔′𝑎𝑏𝛽
𝑎𝛽𝑏, (8)

𝛾 ′4𝑎 = 𝛽𝑎, 𝛾 ′𝑎𝑏 = 𝑔′𝑎𝑏, (9)

and the inverse is:

𝛾 ′44 = 𝛼2, (10)

𝛾 ′4𝑎 = 𝛼2𝛽𝑎, 𝛾 ′𝑎𝑏 = 𝑔′𝑎𝑏 + 𝛼2𝛽𝑎𝛽𝑏, (11)

This formulation of KK is non-standard from the textbook version, e.g., see [43], because it reverses

the covariant and contravariant forms from the standard and inverts 𝛾 ′44. In addition, we do not

equate 𝛽𝑎 with the electromagnetic vector potential since it is needed for the gravitational theory.

Thus, the formulation is equivalent to the ADM formalism [36] but in one additional dimension,

and I will use ADM vocabulary such as referring to the 𝛽𝑎 as the “shift vector” and 𝛼 as the “lapse

function” below.

Let 𝛼 = 𝑒−3𝜙. Define the Pauli metric, �̃�𝐴𝐵, in terms of the Jordan metric: 𝛾 ′𝐴𝐵 = 𝛼2∕3�̃�𝐴𝐵 =

𝑒−2𝜙�̃�𝐴𝐵.

�̃�44 = 𝑒5𝜙 + �̃�𝑎𝑏𝛽
𝑎𝛽𝑏, (12)

�̃�4𝑎 = 𝑒2𝜙𝛽𝑎, �̃�𝑎𝑏 = �̃�𝑎𝑏. (13)

The KK action, under the conformal relationship between �̃� and 𝛾 ′ is,

𝐾𝐾 = 1
16𝜋𝐺 ∫ 𝑑5𝑥

√

−𝛾 ′(5)𝑅

= 1
16𝜋𝐺 ∫ 𝑑5𝑥

√

−�̃�
(

(5)�̃� − 16
3
𝑒

3𝜙
2 Δ𝑒−

3𝜙
2

)

, (14)
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where Δ is the Laplace-Beltrami operator in 5-D.

This eliminates the dependence on 𝛼 in the volume element from the action.

The Jordan metric’s submanifold components have the form,

𝛾 ′𝑎𝑏 = 𝑒2𝜙�̃�𝑎𝑏 + 𝑒−4𝜙𝛽𝑎𝛽𝑏. (15)

We consider this to be the “physical” metric while the Pauli is the gravitational. A test mass

with velocity vector 𝑢𝐴 such that,

𝛾 ′𝐴𝐵𝑢𝐴𝑢𝐵 (16)

defines its geodesic. In general it is possible that 𝑢4 ≠ 4 since the momenta in 𝜏 would contribute to

the Kaluza-Klein particle mass. We neglect 𝑢4 here, however. In this case, the geodesic is defined

by Bekenstein-Sanders (1).

The KK action in the cylinder condition, which is enforced by the compactification, where all

derivatives with respect to 𝑥4 are zero, obeys the following relationship,

𝑆𝐾𝐾 = 1
16𝜋𝐺 ∫ 𝑑5𝑥

√

−𝛾 ′(5)𝑅′

= 1
16𝜋𝐺 ∫ 𝑑4𝑥

√

−𝑔′

𝛼

(

(4)𝑅′ + 𝛼2

4
𝐹 ′
𝑎𝑏𝐹

′𝑎𝑏
)

, (17)

where 𝐹𝑎𝑏 = ∇𝑎𝛽𝑏 − ∇𝑏𝛽𝑎. The volume element is always real and non-negative.

Making the conformal transformation (14) to eliminate the lapse function from the volume el-

ement, the action is,

𝐾𝐾 = 1
16𝜋𝐺 ∫ 𝑑4𝑥

√

−�̃�
(

𝐾𝑐𝑑𝑎𝑏∇𝑐𝛽𝑑∇𝑎𝛽𝑏 + (4)𝑅 − 16
3
𝑒

3𝜙
2 Δ𝑒−

3𝜙
2

)

(18)

where 𝐾𝑐𝑑𝑎𝑏 = 𝑒−6𝜙( 1
2
�̃�𝑎𝑐 �̃�𝑏𝑑 + 1

2
�̃�𝑏𝑐 �̃�𝑎𝑑 − �̃�𝑎𝑏�̃�𝑐𝑑).

Using Δ = ∇𝑎𝜕𝑎 where ∇𝑎𝑣𝑎 = 𝑔𝑎𝑏[𝜕𝑏𝑣𝑎 + Γ𝑐
𝑎𝑏𝑣𝑐],

𝑒3𝜙∕2Δ𝑒−3𝜙∕2 = −3
2
∇𝑎𝜕𝑎𝜙 + 9

4
𝜕𝑎𝜙𝜕𝑎𝜙.

The total covariance term, first term on the RHS, does not contribute to the equations of motion.

The shift functions are timelike 𝛽𝑎𝛽𝑎 = −𝛽2 where

𝛽2 = 𝑒6𝜙 − 𝑒2𝜙 (19)
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is a scalar function. This ensures that the universally coupled metric 15 has the same form as the

Bekenstein-Sanders (1) since one may replace the vector with 𝐴𝑎 = 𝛽𝑎∕𝛽 and pull out the factor of

𝛽2.

The constraint has auxiliary field 𝜆𝛽 , and the action is now,

𝐾𝐾 = 1
16𝜋𝐺 ∫ 𝑑4𝑥

√

−�̃�
(

𝐾𝑐𝑑𝑎𝑏∇𝑐𝛽𝑑∇𝑎𝛽𝑏 +

(4)𝑅 − 12𝜕𝑎𝜙𝜕𝑎𝜙 + 𝜆𝛽(𝛽𝑎𝛽𝑎 + 𝛽2)
)

. (20)

We can also write the term 𝐾𝑐𝑑𝑎𝑏∇𝑐𝛽𝑑∇𝑎𝛽𝑏 = 𝑒−6𝜙 1
2
𝑔𝑎𝑐𝑔𝑏𝑑𝐹𝑎𝑏𝐹𝑐𝑑 .

Add an auxiliary field 𝜇1. This has a separate action,

𝑆𝜇 = − 1
16𝜋𝐺 ∫ 𝑑4𝑥

√

−�̃�
[

𝜇1�̂�
𝑎𝑏𝜕𝑎𝜙𝜕𝑏𝜙 + 𝑈 (𝜇1)

]

, (21)

where 𝜇1 is a non-dynamical, dimensionless scalar field and

�̂�𝑎𝑏 = �̃�𝑎𝑏 − 𝑐4𝛽
𝑎𝛽𝑏, (22)

where 𝑐4 is the constant in 5. The potential 𝑈 (𝜇) is an arbitrary function that depends on a scale

𝓁𝐵.

The auxiliary fields 𝜆𝛽 and 𝜇1 are not physical but instead represents a constraint on the shift

vector 𝛽𝑎 and scalar field, 𝜙 (which is a constraint on the lapse function 𝛼.) These in turn are

constraints in the ADM formalism. Their function is to orient and scale the 3 + 1-D slices in

the fifth dimension. Such constraints are common in ADM-based numerical relativity such as

Bona-Massó slicing [41] with a “Gamma-driver” condition on the shift vector creating the highly

successful “moving-puncture” conditions in simulations of inspiraling black holes [44].

The connection between the conformal rescaling and the slicing condition is a consequence

of degrees of freedom in the metric. While the actions are all in terms of the unscaled Jordon

metric, �̃� , rather than the rescaled Pauli metric, 𝛾 [43], the Jordan metric is not completely free

for a choice of conditions. In numerical simulations of relativity using the ADM formalism, e.g.,

York’s conformal dynamics slicing [42] and thin sandwich model [45], the conformal scale of the

submanifold cannot be chosen arbitrarily but must be solved for given a choice of slicing. The same

is true in higher dimensions. Hence, only the conformally invariant aspect of the submanifolds

have unconstrained degrees of freedom. This suggests that slicing and conformal freedom are not

separate degrees and that the Pauli metric representation is needed.
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We now want to take the variation of 𝑆𝐾𝐾 with respect to the three fields 𝜙, 𝛽𝑎, and 𝑔𝑎𝑏. Write

the action as a sum of actions. Let 𝑆𝐾𝐾 = 𝑆𝑅 + 𝑆𝛽 + 𝑆𝜙. Then the full action with the constraints

is one for each term, 𝑆𝐾𝐾𝜇𝜆 = 𝑆𝑅 + 𝑆𝛽 + 𝑆𝜙 + 𝑆𝜆 + 𝑆𝜇.

We assume that matter is given by some Lagrangian dependent on a variety of fields 𝑆𝑀 =

∫ 𝑑4𝑥
√

�̃�𝑀 [�̃�𝑎𝑏, 𝛽𝑎, 𝜙,Ψ, 𝐴𝑎]. In this section, we are only concerned with the stress-energy ten-

sor 𝛿𝑆𝑀 = −1
2
∫ 𝑑4𝑥

√

−𝑔𝑇𝑎𝑏𝛿𝑔𝑎𝑏 where 𝑇4𝑎 = 𝑇44 = 0.

Variation of 𝑆𝐾𝐾𝜇𝜆 + 𝑆𝑀 with respect to the metric �̃�𝑎𝑏 leads to the field equations,

�̃�𝑎𝑏 = −𝑒−6𝜙(�̃�𝑐𝑑𝐹𝑐𝑎𝐹𝑑𝑏 −
1
4
�̃�𝑎𝑏𝐹

𝑐𝑑𝐹𝑐𝑑) +

(12 + 𝜇1)𝜕𝑎𝜙𝜕𝑏𝜙 + 6�̃�𝑎𝑏(𝑈 ′ − 𝛽𝑎𝛽𝑏𝜕𝑎𝜙𝜕𝑏𝜙)

−2𝛽𝑐𝜕𝑐𝜙𝛽(𝑎𝜕𝑏)𝜙 − 𝜆𝛽𝛽𝑎𝛽𝑏 +

8𝜋𝐺[𝑇𝑎𝑏 + 2𝑒−6𝜙𝛽𝑐𝑇𝑐 (𝑎𝛽𝑏)] +
1
2
(𝜇𝑈 ′ − 𝑈 )�̃�𝑎𝑏 (23)

and we have used the slicing condition,

�̂�𝑎𝑏𝜕𝑎𝜙𝜕𝑏𝜙 = −𝑈 ′ (24)

and 𝑈 ′ = 𝜕𝑈∕𝜕𝜇1.

For variations with respect to 𝜙 and 𝛽𝑎, one can apply the Euler-Lagrange and rearranging,

∇𝑎([(12 + 𝜇1)�̃�𝑎𝑏𝜕𝑏𝜙 + 𝜇1𝛽
𝑎𝛽𝑏𝜕𝑏𝜙) =

8𝜋𝐺
(

�̃�𝑎𝑏 + 𝑒−6𝜙𝛽𝑎𝛽𝑏) 𝑇𝑎𝑏 + 6𝐾𝑐𝑑𝑎𝑏∇𝑐𝛽𝑑∇𝑎𝛽𝑏 (25)

The final equation for the vector field is,

∇𝑐(𝑒−6𝜙𝐹 𝑐
𝑎) = −2𝜆𝛽𝛽𝑎 − 𝜇1𝛽

𝑐𝜕𝑐𝜙𝜕𝑎𝜙 +

(8𝜋𝐺)𝑒−6𝜙𝛽𝑐𝑇𝑐𝑎, (26)

which, by contracting with 𝛽𝑎, solves for 𝜆𝛽 ,

𝜆𝛽 =
1
2

[

− 𝛽𝑎∇𝑐(𝑒−6𝜙𝐹 𝑐
𝑎) − 𝜇1𝛽

𝑎𝛽𝑐𝜕𝑎𝜙𝜕𝑐𝜙 − 8𝜋𝐺𝑒−6𝜙𝛽𝑎𝛽𝑐𝑇𝑎𝑐

]

(𝑒6𝜙 − 𝑒2𝜙)−1 (27)

Thus, we have a total of 15 field equations.

One can easily recover general equivalence to 3+1-D GR by rescaling 𝜆𝜙𝜙′ = 𝜙 and 𝜆𝜙 → 0,

in which case both the scalar and vector parts of the action go to zero. This is also equivalent to

letting 𝛼2 → 0 in the original Kaluza-Klein theory.
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A. Quasi-static limit

Now we will show how to recover both Newtonian and MOND behavior in the case of slow

motion and weak potentials. In the quasi-static limit, one expands 𝜙 = 𝜙0+𝜑 where 𝜙0 is constant

and 𝜑 is independent of time and |𝜑| ≪ 1. The Einstein-Hilbert metric becomes 𝑔00 = 𝑒−2𝜙0(1 −

2Ψ) and 𝑔𝑖𝑗 = 𝑒2𝜙0(1−2Θ)𝛾𝑖𝑗 where 𝛾𝑖𝑗 = 𝛿𝑖𝑗+ℎ𝑖𝑗 . The shift vectors are 𝛽0 = −𝑒−𝜙0(𝑒6𝜙0−𝑒2𝜙0)(1+

Ψ), 𝛽0 = −𝑒𝜙0(𝑒6𝜙0 − 𝑒2𝜙0)(−1 + Ψ) and 𝛽 𝑖 = 𝛽𝑖 = 0. The matter metric is then �̃�00 = −(1 − 2Ψ̃)

and �̃�𝑖𝑗 = (1 − 2Φ̃)𝛾𝑖𝑗 where Ψ̃ = Ψ − 𝜑 and Φ̃ = Φ − 𝜑.

The quasi-static limit has the same assumptions as the first Parameterized Post-Newtonian

(1PPN) limit. The gravitational field is a small fluctuation about the background Minkowski space-

time. Matter is represented with an effective perfect fluid with density 𝜌, pressure 𝑝, internal energy

Π and 3-velocity 𝑣. All fields are expanded perturbatively in orders of 𝑣 = |𝑣|. Let Φ𝜌 be the Pois-

son potential from the baryonic only matter density ∇⃗2Φ𝜌 = 4𝜋𝐺𝑁𝜌 and 𝐺𝑁 Newton’s constant.

As in the PPN formalism, 𝜕∕𝜕𝑡 ∼ 𝑂(𝑣), Φ𝜌 ∼ 𝜌 ∼ Π ∼ 𝜑 ∼ 𝑂(𝑣2), 𝑝 ∼ 𝑂(𝑣4). We also have

ℎ𝑖𝑗 ∼ 𝑂(𝑣2) and 𝛽𝑖 ∼ 𝑂(𝑣3).

The quasi-static limit only contains terms up to 𝑂(𝑣2) so terms containing 𝑝 and 𝜌Π are ignored.

This means that matter is simply dust 𝑇𝑎𝑏 = 𝜌𝑢𝑎𝑢𝑏 with a normalized four velocity 𝑢𝑎.

With these assumptions, the spatial part of the equations 23 reduces to 𝐺𝑖𝑗 = 0 as in AeST.

The disformal transformation gives ℎ𝑖𝑗 = 2[𝜑 − 𝛾𝑃𝑃𝑁Φ𝑁 ]𝛿𝑖𝑗 and shows that 𝛾𝑃𝑃𝑁 = 1. All the

other terms are 𝑂(𝑣3) or greater except those corresponding to the MOND equations [30][22]. Let

𝜇 = 𝜇1 + 12. Then,

∇2Ψ̃ = 8𝜋𝐺
2 − 𝑐1 + 𝑐4

𝜌, (28)

∇𝑖(𝜇∇𝑖𝜑) = 8𝜋𝐺𝜌, (29)

Φ̃ = Ψ̃ (30)

where in this case 𝑐1 =
1
2
(1 − 𝑒−4𝜙0) and 𝑐4 is chosen in the constraint 22.

Define 𝜕⟂ = (𝜕4 − 𝛽), where 𝛽 is the Lie derivative along the shift vector, as a derivative

perpendicular to the 4D submanifold.

For a scalar field, 𝛽 = 𝛽𝑎𝜕𝑎𝜙, and, for example, Bona-Massó slicing imposes a condition

on the the lapse function, 𝜕⟂𝛼 = −𝛼2𝑎(𝛼)𝐾 where 𝐾 is the trace of the extrinsic curvature and

𝑎 is a function that gives the desired slicing. Slicing conditions, in general, are expressed as an

equation involving a derivative of how the lapse function changes perpendicular to the submanifold,
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𝜕⟂𝛼 = 𝑓 (𝛼, 𝜕𝑎𝛼).

Given that we assume 𝜕4⋅ = 0, and our MOND slicing condition (24) can be rewritten,

𝜕⟂𝜙 = ±
√

𝑑𝑈
𝑑𝜇

+ 𝜕𝑎𝜙𝜕𝑎𝜙 (31)

Since 𝜙 = −1
3
log|𝛼| and

𝜕𝑎𝜙 = 1
3𝛼

𝜕𝑎𝛼

we can make a substitution so that this becomes a condition on the lapse function directly. If we

let

𝑈 =
( 1
3𝛼

)2
𝑈𝛼 (32)

then the condition on the lapse function is

𝜕⟂𝛼 = ±

√

𝑑𝑈𝛼

𝑑𝜇
+ 𝜕𝑎𝛼𝜕𝑎𝛼. (33)

This is now written as a slicing condition perpendicular to the submanifold.

Equation 33, combined with the condition on 𝛽𝑎, 19, now fixes the 5D theory.

To quasi-static order, 𝑈 ∼ 𝑉 , where 𝑉 is the standard AeST potential given in 3. MOND

defines 𝜇 as 𝜇 = 𝑑𝑓
𝑑𝑋

where 𝑋 = 𝓁2
𝐵�̂�

𝑎𝑏𝜕𝑎𝜙𝜕𝑏𝜙 and 𝑓 = 𝜇𝑋 + 𝓁2
𝐵𝑉 . It does not precisely specify

𝜇 or 𝑉 ; it only determines two limits. MOND is achieved if,

𝑑𝑉
𝑑𝜇

→ − 4
9𝑏20𝓁

2
𝐵

𝜇2

where 𝑏0 is a constant determined by𝜙0 and the MOND acceleration parameter 𝑎0 [30]. Meanwhile,

it diverges for 𝜇 → 𝜇0, for example, 𝑑𝑉
𝑑𝜇

→ (𝜇0 − 𝜇)−𝑚, gives the Newtonian limit where 𝜇0 is a

constant.

Since 𝜇 is a function of 𝑋, this means that perpendicular to the submanifold in the Newtonian

limit,

𝜕⟂𝜙 ≈ ±
√

𝑑𝑉
𝑑𝜇

→ ∞.

This is true if 𝛼 → 0 according to 32 which is consistent with standard General Relativity (the

vector potential drops out of the equations). This occurs if the scalar field is very large, 𝜙 → ∞.

In the MOND limit, on the other hand, the slicing condition is

𝜕⟂𝜙 → ±

√

𝜕𝑎𝜙𝜕𝑎𝜙 − 4
9𝑏20𝓁

2
𝐵

𝜇2 (34)
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where under spherical symmetry, 𝜇 → 2𝐺𝑁

𝐺
1

𝓁𝐵𝑎0
𝑒𝜙0

√

𝓁2
𝐵�̂�𝑎𝑏𝜕𝑎𝜙𝜕𝑏𝜙 and 𝐺𝑁 depends on 𝜇0 and 𝜙0

[30].

Once the degrees of freedom are selected, the scalar field’s spacetime distribution is determined

by 25 with the primary influence being the baryonic matter distribution. Its evolution in the 5th

dimension is determined by the slicing condition 31.

The slicing condition is the source of MOND phenomenon. The equation 31 is in terms only of

scalar quantities with respect to the 3+1-D manifold. Thus, it is invariant under 3+1-D coordinate

transformations.

IV. FLRW BACKGROUNDS AND SPIN-2 TENSOR PROPAGATION

AeST requires fine tuning (7) that ensures that it matches empirical data against Friedmann-

Lemaître-Robertson-Walker (FLRW) backgrounds. In particular, the tensor mode propagation

speed and Shapiro delay must be the same as electromagnetic waves to agree with observations

of GW170817 [37]. This fine tuning is ad hoc in AeST but predicted in the KK theory.

The prediction comes from the unique determination of the Bekenstein-Sanders metric (1).

Sanders showed that the metric’s form (up to a constant scaling of the scalar field) is determined

by global conformal symmetry and the independence of units of the fine structure constant [46].

Indeed, the form is uniquely determined. By enforcing the form of the metric to agree with this,

however, the KK theory automatically predicts the fine tuning used in [22].

The key observation is in the differences between the equations for AeST (as derived from 3

and given in [22]) and those of the KK theory’s equation for the Einstein tensor (23).

Let the universally coupled metric 𝑔𝑎𝑏 have the following form,

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝛾𝑖𝑗 + 𝜒𝑖𝑗)𝑑𝑥𝑖𝑑𝑥𝑗 . (35)

In this case, 𝑎 is the scale factor, 𝛾𝑖𝑗 is the spatial metric of constant curvature 𝜅, and 𝜒𝑖𝑗 is the

transverse-traceless tensor mode GW such that 𝛾 𝑖𝑗𝜒𝑖𝑗 = 0 and ∇𝑖𝜒 𝑖
𝑗 = 0.

In the case of tensor modes, 𝜙 and the shift 𝛽𝑎 are unperturbed, 𝛽 𝑖 = 0, and 𝜙 = �̄�(𝑡), the spatial

derivatives in 𝜙 drop out.

To show that the Kaluza-Klein equations for tensor mode propagation are the same as AeST. We

could go through the lengthy and tedious computations which can be found in [47], or we exploit

a property of FLRW spacetime to show equivalence trivially. The later approach gets around the
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fact that the KK shift vector has an additional factor dependent on the lapse function not present in

AeST. The key is to remove any derivatives of 𝛽𝑎 from the action (20) for FLRW backgrounds in

which case the factor can be pulled out as shown in the following:

By construction, we have 𝛽𝑎 timelike orthogonal to the 3D spatial hypersurface. This is a non-

trivial affinely parameterized geodesic vector field. By the Frobenius theorem, the twist tensor is

naught: 𝐹𝑎𝑏 = ∇[𝑎𝛽𝑏] = 0. Therefore, terms dependent on 𝐹𝑎𝑏 drop out of the action (20). Hence,

the action is only left with terms that have no derivatives of the shift vector 𝛽𝑎. Now, replace the

time oriented component 𝛽0 with (𝑒6�̄�−𝑒2�̄�)𝐴0 where 𝐴0 is the time component of the AeST vector

field. The factor of (𝑒6�̄� − 𝑒2�̄�) multiplies with the factors of 𝑒−6�̄� from the lapse function in the

action to give a factor 1 − 𝑒−4�̄� which matches the factor in the AeST action [22]. Thus, in the

perturbation theory of spin-2 tensor modes against an FLRW background, the two theories have

the same action.

Let 𝐴0 = −𝑒−�̄�. This means that the tensor mode equations are the same in both theories in the

perturbation theory. The tensor mode obeys [22],

𝑒2�̄�(1 − 𝑐13)[�̈� 𝑖
𝑗 + (3𝐻 + 4 ̇̄𝜙)�̇� 𝑖

𝑗] − 𝑒2�̄�
𝑑𝑐13
𝑑𝜙

̄̇𝜙�̇� 𝑖
𝑗 −

1
𝑎2
𝑒−2�̄�(∇2 − 2𝜅)𝜒 𝑖

𝑗 = 16𝜋𝐺𝑒−2�̄�Σ(𝑔)𝑖
𝑗 . (36)

Here 𝐻 = �̇�∕𝑏 is the rescaled Hubble parameter where 𝑏 = 𝑎𝑒𝜙 and Σ(𝑔)𝑖
𝑗 is a traceless matter term

related to anistropic stress [47]. From 6, 𝑐13 = 1 − 𝑒−4𝜙 ensures the correct fine tuning. For the

KK theory, the product of the square lapse function and the square magnitude of the shift gives

this value −𝛼2𝛽2 = 𝑐13. This is precisely the square of the magnitude of a shift of a point 𝑥𝑎 for

a temporal distance 𝛼𝑑𝜏 in the fifth dimension required by the Bekenstein-Sanders form of the

metric.

This means that, while in AeST the value of 𝑐13 is chosen empirically as a free function, in the

KK theory 𝑐13 is not free at all but fixed by the Einstein-Hilbert action. Nevertheless, they are the

same in both theories.

V. THE IMPLICATIONS OF EXTRA DIMENSIONS

The lightest Kaluza-Klein particle remains a strong candidate for WIMPs [48]. The Kaluza-

Klein dark matter theory proposes that CDM arises from the momenta propagating in a higher

dimension [39]. Such momenta produces a ladder of particles, 𝑛∕𝑅, where 𝑅 is the compactified
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dimension radius and 𝑛 is the mode. The lightest on order 1∕𝑅 is stable and a good candidate for a

Weakly Interacting Massive Particle (WIMP). LKPs arise from a minimal model of Universal Extra

Dimensions (MUED) where the LKP is a massive hypercharge gauge boson. They are expected

to have a mass of 500-2000 GeV depending on the effective annihilation cross section. In the

MUED KK particle theory, the scalar of the higher dimensional graviton tensor, which I will show

is the MOND potential, is referred to as the radion field [49]. The massive 𝑛 = 1 radion particle

is generally ignored in MUED. So far no evidence of LKP has been found. Since the scalar and

vector fields, meanwhile, arise from the 𝑛 = 0 modes in a compactified dimension, there are no

particles necessarily to find.

Direct detection experiments so far have been insensitive to the heavier, TeV LKP. It is unlikely

that this will change in the near future. Indirect detection through gamma rays, neutrinos and

synchrotron flux, positrons, antiprotons, and antideuterons have also been looked at [50]. At the

Large Hadron Collider (LHC) the main method of detecting LKP would be from strongly produced

KK gluons and KK quarks.

That KK theory implies the existence of a vector and scalar field as well as modes that generate

massive particles is uncontroversial. What has generally been unknown is the properties of those

fields and particles. In this paper, it has been asserted that the vector and scalar fields appear as

additional gravitational fields that act at large scales but not at small. The reason they are not

measurable at the Solar System scale is because of the nature of the slicing condition. The closer

to constant slicing the more gravity will be Newtonian. It is the variations in slicing from location

to location that generates the MOND potential and lensing effects from the shift vector. At Solar

System scales, the accelerations are high enough that the slicing becomes nearly constant.

The extra dimension need not be compactified. Another compelling explanation is that 𝜕4⋅ ≈ 0

for classical phenomenon but at the quantum level the universe has stochastic [51] or chaotic [52]

flow in the 5th dimension, i.e., the fifth dimension is non-compactified [43].

Rovelli has defined a covariant mechanism for an equilibrium flow dimension in terms of a “mul-

tifingered” thermal time parameter as the “speed” of time [53] based on a symplectic manifold [54].

In the stochastic quantization description, under Wick rotation for a Gibbs state 𝜌𝛽 = 𝑍−1(𝛽)𝑒−𝛽𝐻 ,

for 𝑍(𝛽) = ∫ 𝑒−𝛽𝐻 and 𝐻 the ADM Hamiltonian for the 4D geometry as it flows in 𝜏, this thermal

parameter is uniformly 1∕𝛽 = ℏ, which is the ratio of thermal parameter 𝔱 to physical parameter 𝜏,

ℏ = 𝔱∕𝜏. Based on the spectral lines of distant galaxies, this ratio must be constant to within very

tight constraints, but the physical 𝜏 parameter can vary according to the scalar field as long as the
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thermal parameter varies by the same amount.

In the stochastic interpretation, neglecting matter, if we allow the 4D submanifold be a de Sitter

space, then under Wick rotation it is the surface of a 4-sphere, 𝑆4 with radius
√

3∕Λ where Λ is the

cosmological constant. This closed submanifold is one potential slicing of an FLRW spacetime in

one higher dimension.

If the overall manifold is anti-deSitter, i.e., AdS5 symmetry, having a negative cosmological

constant, it connects to 𝑁 = 4 super Yang-Mills theory [55]. Such a connection would resolve two

problems with the AdS/CFT correspondence: that it is not realistic because our universe is four

dimensional and that our universe appears to be de Sitter. An investigation of the possibility of a

negative cosmological constant and Anti-deSitter symmetry is left for future work.

Since slicing is simply a choice of coordinates, it comes down to an observer’s state of motion

relative to the extra dimension. This is given by 2. Choose a point in spacetime 𝑥𝑎. A distant

observer, O, measures a field as it propagates from 𝜏 to 𝜏 + 𝑑𝜏. The observer sees that its location

in spacetime, 𝑥𝑎 shifts by the shift vector 𝑥𝑎 + 𝛽𝑎𝑑𝜏. In addition, compared to proper time, time

propagates at a rate of 𝛼. For every infinitesimal clock tick in proper time, the field propagates at

𝑥𝑎+𝛼𝛽𝑎𝑑𝜏. Thus, the slicing is a property of how fields propagate within the compactified dimen-

sion and that in turn depends on a combination of the distribution of matter and the interpolating

function, 𝜇.

Since the slicing condition is analogous to a gauge fixing, it means that parameters such as 𝑎0
and the form of 𝜇 may not be fixed as well. We do not explore that possibility in this paper but that

is an avenue for further investigation.

The vector field is analogous to the gravitomagnetic potential in GEM. GEM is well understood

when applied to 4-D GR and the same principles can be applied in 5D [56]. The gravitoelectric field

from the lapse function, 𝐺𝑎 = −∇𝑎𝜙, for example produces MOND effects while the Newtonian

force comes from the time-time component of the metric. Meanwhile, the lensing is due to non-

linear variations in the shift vector. The Sagnac effect is an example of a well understood effect on

light that comes directly from a shift vector in 4D GR. Tidal forces, differential dragging, described

by the gravitomagnetic tidal tensor ℍ𝐴𝐵 ∼ 𝜕𝑎𝜕𝑏𝛽𝑐 may also occur.

Ordinary post-Newtonian GEM cannot explain galactic rotation curves [57][58], despite some

flawed attempts to do so [59], because their contributions are order (𝑣∕𝑐)2. But higher dimensional

GEM can because it can generate much stronger gravitational effects on the same order as the

Newtonian force.
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This suggests possible tests for the theory involving higher dimensional gravitomagnetic effects

similar to the Lense-Thirring and tidal effects that dark matter would not cause.

VI. CONCLUSION

In conclusion, I have shown that a Kaluza-Klein theory in 5D can replicate Aether-Scalar-Tensor

theory without ruling out additional sources of dark matter from MUED Kaluza-Klein dark matter

WIMPs. I had also shown that the KK theory constrains most of the freedom in the definition of

AeST. The only freedom is in the slicing condition which is responsible for MOND and must be

matched to empirical data.
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